Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Insect research collections often include outreach drawers displaying specimens to enhance public awareness and access to scientific knowledge at various events. Despite their educational value, there is limited understanding of how these drawers are designed, used, or evaluated for quality. As a first step towards understanding these aspects, we surveyed members of the community who use insect drawers for public outreach. Survey results indicate that curators and collection managers consider outreach drawers important and use them widely at events, though they are rarely assessed beyond aesthetics and/or anecdotal audience feedback. The number and thematic scope of these drawers vary significantly among institutions, from as few as 3 to more than 50, and covering topics from collection history to pollinator conservation. However, few institutions display these collections online, limiting access to in-person events. Their maintenance and development are also often constrained by limited funding and staff availability. To guide decisions and efforts to enhance the educational impact and accessibility of outreach drawers, we introduce a quick-assessment tool based on five criteria: information, relevance, aesthetics, potential for engagement and inspiration. The next step is to apply appropriate tools to measure public engagement with these displays.more » « lessFree, publicly-accessible full text available August 27, 2026
-
Rankin, Lela (Ed.)The pace and breadth of infant development is remarkable—by their third birthday, infants acquire an impressive range of skills across multiple domains. Studying the complexities of cross-domain development, however, poses a challenge for a field of researchers with traditionally siloed expertise. The developmental cascades framework—the conceptual view that disparate domains are interconnected and reciprocally influential—offers researchers a flexible approach to identify and describe infant development. Over the past quarter century, cascades have surged in popularity among infancy researchers. In this review, we provide a history of developmental cascades research and highlight its contributions to the science of infant behavior and development. We discuss contemporary themes and challenges cascades researchers face (e.g., how to clear the high bar needed to establish causality among links in a cascading chain of events) and make recommendations for future research. Specifically, we propose that adopting a cascades approach encourages researchers to: (1) consider the ‘whole child’ by charting connections across different domains; (2) examine multiple timescales by linking moment-to-moment interactions to broader changes across development; (3) embrace complexity and foster interdisciplinary collaboration; and (4) gather evidence for causal pathways by combining the rigor of lab experiments with the richness of natural observations. Finally, we consider future directions for the next quarter century of cascades research—for developmental science, applied psychology, and clinical intervention.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
ABSTRACT Multiarticular muscle systems are widespread across vertebrates, including in their necks, digits, tails and trunks. In secondarily limbless tetrapods, the multiarticular trunk muscles power nearly all behaviors. Using snakes as a study system, we previously used anatomical measurements and mathematical modeling to derive an equation relating multiarticular trunk muscle shortening to postural change. However, some snake trunk muscles have long, thin tendinous connections, raising the possibility of elastic energy storage, which could lead to a decoupling of muscle length change from joint angle change. The next step, therefore, is to determine whether in vivo muscle shortening produces the postural changes predicted by mathematical modeling. A departure from predictions would implicate elastic energy storage. To test the relationship between muscle strain and posture in vivo, we implanted radio-opaque metal beads in three muscles of interest in four corn snakes (Pantherophis guttatus), then recorded X-ray videos to directly measure muscle shortening and vertebral column curvature during locomotion. Our in vivo results produced evidence that elastic energy storage does not play a substantial role in corn snake lateral undulation or tunnel concertina locomotion. The ability to predict muscle shortening directly from observed posture will facilitate future work. Moreover, the generality of our equation, which uses anatomical values that can be measured in many types of animals, means that our framework for understanding multiarticular muscle function can be applied in numerous study systems to provide a stronger mechanistic understanding of organismal function.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 6, 2026
-
Abstract In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species’ range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species. Experiments that plant replicated genotypes across a range of environments can characterize genotype-specific reaction norms; identify genetic, geographic, and climatic factors affecting variation in climate responses; and make predictions of climate responses across complex genetic and geographic landscapes. The North American hybrid zone ofPopulus trichocarpaandP. balsamiferarepresents a natural system in which reaction norms are likely to vary with underlying genetic variation that has been shaped by climate, geography, and introgression. Here, we leverage a dataset containing 45 clonal genotypes of varying ancestry from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range, including sites warmer than the natural species ranges. Growth and mortality were measured over two years, enabling us to model reaction norms for each genotype across these tested environments. Genomic variation associated with species ancestry and northern/southern regions significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade-off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates. Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape-level effects.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.more » « less
An official website of the United States government
